Clean Air Act Task Force 5 June 2006

Presentation on Air Quality Modeling, Weight of Evidence, and Costs/Benefits of EGU Control Programs

Results of Round 3 and Round 4 CAMx Modeling for Wisconsin

Information Taken from Work by the Lake Michigan Air Directors

Consortium

CAMx Domains for PM and Ozone

PM grids: ~ 36 km x 36 km Ran full year Daily estimates

Ozone grids: ~ 12 km x 12 km Ran 90 days (June–August) Hourly estimates

Air Quality Modeling

$FY D.V. = BY D.V. \times RRF$

where:

- BY D.V. = (a) 3-year period used for designations ('01-'03)
 - (b) 3-year period "straddling" inventory base year ('01-'03)
 - (c) highest design value in three 3year periods which include inventory base year
 - (d) average of three 3-year periods which include inventory base year ('00-'02, '01-'03, '02-'04)

Control Strategy Options

Control Measure	CAIR – Full Trading	EGU1 – 5 States	Commissioner's Package	All Minimum	All Maximum
Existing – OTB ControlsExisting – OTB Controls	X	X	X	X	X
Power Plants		EGU1		EGU1	EGU2
Other Point Sources ICI Boilers			X	ICI1 + cement kilns, asphalt plants & glass mfg.	ICI3 + cement kilns, asphalt plants & glass mfg.
Area Sources AIM Consumer Products PFC			X	X + auto refinish, degreasing, srfc. coat, gas disp. fac., & asphalt pave	X + auto refinish, degreasing, srfc. coat, gas disp. fac., & asphalt pave
Highway Mobile Chip Reflashing Vol. Diesel Retrofit Low RVP (select areas)			X	X	X

2009 Round 4 Ozone Results (ppb)

County	Base Year DV	CAIR – Full Trading	CAIR - Budgets	EGU1 - 5 States	All Minimum	All Maximum
Kenosha	96.0	89.8	89.6	89.7	89.0	88.6
	98.3	92.0	91.9	91.9	91.2	90.7
Racine	91.7	84.9	84.9	84.8	84.2	83.7
Milwaukee	91.0	84.2	84.2	84.1	83.5	82.9
	91.0	84.9	84.2	84.9	83.5	83.0
Ozaukee	93.0	85.4	85.4	85.3	84.6	84.0
Sheboygan	97.0	88.9	88.6	88.8	87.8	87.1
Kewaunee	89.3	81.0	81.3	80.9	80.5	79.8
Door	91.0	81.8	82.2	81.7	81.6	80.8

2012 Round 4 Ozone Results (ppb)

County	Base Year DV	CAIR – Full Trading	EGU1 - 5 States	Commissio ners' Package	All Minimum	All Maximum
Kenosha	96.0	88.2	87.8	87.3	86.7	86.0
	98.3	90.3	89.9	89.4	88.8	88.1
Racine	91.7	82.9	82.5	82.1	81.5	80.8
Milwaukee	91.0	82.3	81.7	81.1	80.2	79.5
	91.0	82.4	82.0	82.2	81.5	80.2
Ozaukee	93.0	82.9	82.4	81.7	80.9	80.1
Sheboygan	97.0	86.4	85.8	85.4	84.5	83.6
Kewaunee	89.3	79.1	78.5	77.6	76.9	76.4
Door	91.0	79.3	78.8	77.9	77.2	76.7

2009 CAIR % Contribution to 85 ppb Ozone (Round 3)

State	Chiwaukee	Harrington Beach	Sheboygan
Wisconsin	10	33	24
Illinois	32	24	19
Indiana	5	7	8
Missouri	8	7	7

2009 CAIR % Contribution to 85 ppb Ozone (Round 3)

Source Sector	Chiwaukee	Harrington Beach	Sheboygan
EGU	9	7	11
Non-EGU	11	10	9
Area	6	8	6
Off-Road	12	17	11
Highway	29	36	30
Biogenic	5	6	5
Boundary Conditions	29	16	27

Weight of Evidence

Information Taken from Work by the Lake Michigan Air Directors

Consortium

"Guideline on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hour Ozone NAAQS", October 2005

If the future year modeled design values are "close" to NAAQS, then a WOE demonstration should be conducted to determine if aggregate supplemental information support the modeling result

Weight of Evidence Plan

- Air quality modeling (based on guidance)
- Air quality modeling (alternative assumptions)
- Trends-based assessment (monitoring plus emissions data)
- Observation-based methods
- Source apportionment analyses
- Trajectory-based analyses

BY D.V.: Example

Chiwaukee Prairie: '00-'02 100 ppb

(g)

'01-'03 101 ppb

'02-'04 94 ppb

3-year period used for designations ('01-'03) (a) 101 ppb (b) 3-year period centered on inv. base year ('01-'03) 101 ppb highest design value in three 3-year periods which 101 ppb (c) include inventory base year (d) average of three 3-year periods which include 98.3 ppb inventory base year ('00-'02, '01-'03, '02-'04) 5-year period centered on inv. base year ('00-'04) (e) 93.4 ppb (f) 3-year period centered on inv. base year w/ met adjustment ('01-'03) ????

2002 estimate based on regression line for '00-'04

94.0 ppb

2009 Round 4 Ozone Results (ppb) Alternative Base-Year Design Values

Monitoring Site	Base Year DV Three 3-Year Periods	3-Year Period 2002 - 2004	5-Year 2001 - 2005	2002 Theil Trend	3-Year Meteorological Adjustment
Chiwaukee Base Year DV	98.3	101.0	93.4	94.0	
Chiwaukee 2009 Modeling	90.3	94.4	87.3	87.9	
Bayside Base Year DV	91.0	94.7	88.0	92.5	
Bayside 2009 Modeling	82.4	87.6	81.4	85.6	
Sheboygan Base Year DV	97.0	100.0	93.6	95.0	
Sheboygan 2009 Modeling	88.6	91.6	85.7	87.0	

Each node shares similar meteorological characteristics, so these trends are in essence meteorologically adjusted

Costs and Benefits of EGU Controls in the Lake Michigan Region

Information Taken from Preliminary
Work by Leland Deck and Stratus
Consulting for the Lake Michigan Air
Directors Consortium

EPA Estimates of Health Effect Values

Values Per Health Effect					
	Value (1999\$)	Source of Valuation			
Premature Mortality	\$6,000,000	Wage Studies, WTP			
Chronic Bronchitis	\$380,000	WTP			
Heart Attack (MI)	\$66,000 to \$140,000	Hosp. Costs + Wage Loss			
Hospital Admissions	\$6,600 to \$18,400	Medical Costs			
ER Visits	\$286	Medical Costs			
Symptom Days	\$17 to \$43 / day	WTP			
Work Loss Days	\$75	Median Wage			

Change in PM_{2.5} Levels with EGU1

~55% of Avoided Health Effects Occur in MRPO States

- Any change in PM2.5 levels lead to health effects
 - Large populations in East receiving small PM_{2.5} improvements produce substantial benefits
- Future air quality analysis based on IPM runs will change picture of distribution of benefits
 - Emissions 'exported' to nearby states will decrease PM_{2.5} improvements in MRPO states
 - Increasing emissions in southern states will increase PM_{2.5} exposure there, even causing worse PM_{2.5} levels in southern tier states

Estimated Value of Avoidable Health Effects

Value of Avoidable Health Effects (Millions of 1999\$)				
	EGU1	EGU2		
Mortality	\$15,824	\$18,576		
Chronic Bronchitis	\$717	\$841		
Heart Attack (MI)	\$775	\$907		
Hospital Admit, Cardiovascular	\$24	\$29		
Hospital Admit, Respiratory	\$21	\$25		
Emergency Room Visits	\$2	\$2		
Acute Bronchitis	\$2	\$2		
Upper Resp. Symptom Days	\$54	\$63		
Lower Resp. Symptom Days	\$1	\$1		
Asthma "Attack"	\$2	\$2		
Work Loss Days	\$44	\$51		
TOTAL	\$17,500	\$20,500		

Benefit-Cost Discussion

- Preliminary measured benefits certainly exceed costs
 - Adding ozone benefits will increase total benefits, probably ~ 10%.
- Incremental benefit cost analysis
 - EGU1 costs \$0.9 Billion, produces \$17.5 Billion benefits
 - EGU2 costs an additional \$0.4 Billion,
 produces additional \$3 Billion benefits
- Revising AQ modeling to match IPM emissions results will reduce benefits results